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Abstract13

In this paper, the problem of machine minimization was analyzed through the perspective of vaccine14

scheduling. To be precise, two types of problems were tackled. The first one is the offline problem15

where the input is completely known by the algorithm before scheduling. The second one is the16

online problem where the program will consequently process its input piece-by-piece. For the17

offline problem, two linear programming models were designed and their time complexity with18

their representation were compared. Linear programming techniques were used to solve the offline19

problem. For the online problem, a general lower bound for any deterministic online algorithm was20

proposed. Moreover, two online algorithms were discussed and analyzed in terms of lower and upper21

bound for competitive ratio.22
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1 Introduction27

In computer science, mathematics and economics, an optimization problem is the problem of28

finding the best solution from all feasible solutions. Optimization problems can be divided29

into two categories, depending on whether the variables are continuous or discrete:30

An optimization problem with discrete variables is known as a discrete optimization, in31

which an object such as an integer, permutation or graph must be found from a countable32

set.33

A problem with continuous variables is known as a continuous optimization, in which an34

optimal value from a continuous function must be found. They can include constrained35

problems and multi-modal problems.36

Discrete optimization problem for vaccine scheduling is tackled in this paper.37

1.1 Machine minimization problem definition38

In this subsection, the machine minimization problem for vaccine scheduling is described.39

We consider the problem where the vaccination is with two-phase vaccine jabs. Each vaccine40

jab has two doses, and a certain time gap is required between the two doses. Each dose must41

be given by a hospital/machine. After the time slot a patient having a dose, the patient42
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1:2 Machine minimization problem for vaccine scheduling

may be required to stay further for examinations for a number of additional time slots,43

directly after receiving the dose. The time slot of having the dose together with the ones of44

staying for examinations form a contiguous time interval. The length of the time interval45

is the processing time of this dose. Each hospital/machine can only take care (either give46

a dose or examine) of at most one patient per time slot. A patient can submit an interval47

of time slots that he/she is willing to have the first dose. The goal is to assign the time48

slots of the two doses for each patient (where both the preferences of the patients and the49

time gap between the two doses for every jabs must be satisfied) with the minimum number50

of hospitals/machines to operate the vaccine tasks. An instance to our problem has the51

following values:52

Global parameters, which are the same for all patients53

the processing time of the first dose: p1 ≥ 154

the processing time of the second dose: p2 ≥ 155

and the time gap between the first and the second doses: g.56

A set of jobs J = {J1, J2, . . . , Jn}. Each job represents one patient. Each job has the57

following information:58

For job Ji ∈ J :59

∗ The first feasible interval Ii,1 = [ri,1, di,1] for the first dose (given by the patient)60

∗ The first dose is scheduled at start time ti ∈ Ii,1 such that ti,1 + p1 − 1 ≤ di,1.61

∗ The patient-dependent delay xi, where xi ≥ 062

∗ The patient-dependent (second) feasible interval length li where li ≥ p263

∗ The second feasible interval Ii,2 = [ti,1 + p1 + g + xi, ti, 1 + p1 + g + xi + li − 1] for64

the second dose. Note that this interval depends on the start time for the first dose65

as was determined by the program, and the given values g, xi, and li.)66

∗ The second dose is scheduled at start time [ti,2, ti,2 + p2− 1] ∈ Ii,2. (This value also67

has to be determined by the program.)68

Machine (hospital): at any time step, there can be at most one job executing. i.e., at69

each time step, each hospital can have at most 1 patient who received a dose or is in70

observation.71

Feasible schedule: For any job Ji, the first dose is scheduled at time interval [ti,1, ti,1 +72

p1 − 1] ⊆ Ii,1, and the second dose is scheduled at time [ti,2, ti,2 + p2 − 1] ⊆ Ii,2.73

The objective of this problem is to minimize the number of machines (i.e., hospitals).74

Two versions of this particular problem are discussed in this paper:75

Offline problem, where the whole input is known at the beginning;76

Online problem, where the input to the problem is revealed partially during the running77

time of the algorithm that solves it, namely the algorithm must decide on each patient78

separately. Moreover, algorithm decisions are irrevocable.79

In the offline version of the problem, the global parameters p1, p2, g , and the set of jobs80

with for each job the first feasible interval, second feasible interval, patient-depending delay,81

and patient-depending second interval length are given. The task is to find for each patient82

the time slot for the first and for the second dose such that all constraints are fulfilled, and83

the number of hospitals is as small as possible.84

The online problem is described as follows. At the start, the global parameters p1, p2, g85

are given. Then, we have for each patient one round. At round i, we obtain all information86

for the ith patient: these are four integers, where the first two give the interval for the first87

dose, the third the delay for this patient, and the fourth the length of the second feasible88

interval. The online program then has to schedule this patient: give the time and hospital89

when and where the first dose is given, the time and hospital when and where the second90
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dose is given. These should fulfill the conditions as explained earlier.After this, we start the91

next round with the next patient.92

1.2 Related works93

1.2.0.1 Related works of offline problem94

Our problem is a special case of a more general problem, namely machine minimization95

problem with jobs interval constraints. This kind of problem is widely used in real life96

application such as personnel scheduling for work, and telecommunication. These problem97

can be classified in two categories, continuous and discrete. In 2002 J. Chuzhoy et al. [1]98

proved an O(
√

logn
log logn ) approximation via a relaxation of the problem in an ILP. However,99

a lot of people are still focused on finding the best online algorithm as it is still an open100

question and an efficient online algorithm would have more practical application than the101

offline version, since it is more closely to real life situations when inputs are revealed partially.102

1.2.0.2 Relative works of online problem103

In the online version of vaccine scheduling problem each job has a release time, a processing104

time, and must be completed by its deadline. Since the jobs are revealed online over time,105

the algorithm must decide whether to activate/open a new machine depending only on the106

information of the jobs that have been released so far, without any knowledge of the future107

jobs. The aim is to design online algorithm that minimizes the number of activated machines108

to ensure that all the jobs are completed by their deadlines.109

The machine minimization problem studies can be classified to two categories if we discuss110

whether the job preemption is allowed. When preemption is allowed, any job in process may111

be paused and resumed later, possibly on a different machine.112

The preemptive version of online machine minimization problem has been investigated113

extensively. Phillips et al.(2002) [2] showed that there is an O(log pmax

pmin
) -competitive online114

algorithm, where pmax and pmin are the maximum and minimum processing times of jobs.115

However, the competitive ratio is far from optimal compared with a lower bound of 5/4 they116

provided. Nearly two decades later, Chen et al.(2018) [3] improved the competitive ratio to117

O(logm), where m is the optimal number of machines in the offline setting (all the jobs are118

known in advance). Based on this novel work, the competitive ratio was further improved to119

O( logm
log logm ) Azar and Cohen (2018) [4] and to O(log logm) Im et al.(2017) [5].120

The non-preemptive version of online machine minimization problem is more challenging.121

Saha (2013) [6] showed that no algorithm can achieve a competitive ratio better than Ω(log122

pmax /pmin ), which is unbounded if pmax

pmin
is unbounded(pmax and pmin are the maximum123

and minimum processing times of jobs). Thus, more research focused on special cases of124

the non-preemptive problem, for example, uniform processing times and with a common125

deadline. Kao et al.(2012) [7] provided a 5.2-competitive algorithm and a lower bound of 2.09126

for the online machine minimization problem with uniform job processing times. Devanur et127

al.(2014) [8] improved the competitive ratio to e (natural number, mathematical constant128

approximately equal to 2.71828) and showed that no deterministic algorithm for this problem129

has a competitive ratio less than e. Devanur et al.(2014) [8] also gave a 16-competitive130

algorithm for the special case of jobs with equal deadlines. We studied these related works131

discussed by Chen et al.(2020) [9] in their paper, although this paper is not very related to132

our problem, the related paper above did provide us some idea of solving online problem.133

VS 2021



1:4 Machine minimization problem for vaccine scheduling

1.3 Implementation details134

In this subsection we give some implementation details, as the solver we used for the offline135

problem, programming language we used, and characteristics of the machines we used for136

the experiments. This section also presents the main concept of greedy algorithm that we137

will use later on.138

1.3.0.1 Optimization Modeling tool - Gurobi/gurobipy139

The offline problem can be formulated as an integer linear programming (ILP) problem as140

we will see in the next sections.We solve the ILP model using a well known Optimization141

Modeling tool - Gurobi/gurobipy.142

Gurobi comes with a Python extension module called “gurobipy” that offers convenient143

object-oriented modeling constructs and an API to all Gurobi features. The Gurobi distribu-144

tion also includes a Python interpreter and a basic set of Python modules that are sufficient145

to build and run simple optimization models.146

Gurobipy is written in C++ and is an advanced solver for LP and ILP models. Several147

advanced techniques as branch and bound along with cutting off are used for the optimization148

of ILP models. Other solvers like CPLEX or GLPK was also considered.149

The Gurobi Optimizer is capable of solving all major problem types (convex and non-150

convex):151

Linear programming (LP)152

Mixed-integer linear programming (MILP)153

Quadratic programming (QP)154

Mixed-integer quadratic programming (MIQP)155

Quadratically-constrained programming (QCP)156

Mixed-integer quadratically157

The main steps of using this tool are listed below:158

Creating the model159

Adding variables to the model160

Setting the objective161

Adding constraints to the model162

Optimizing the model163

Reporting results - attributes164

1.3.0.2 Greedy algorithm165

Greedy algorithm is a simple, intuitive algorithm that is used as a heuristic in optimization166

problems. The algorithm makes the optimal choice at each step as it attempts to find the167

overall optimal way to solve the entire problem. However, the algorithm does not always168

achieve the optimal value of the problem. In this paper, we will apply this concept to our169

algorithm for the online problem, and will later discuss more about the performance through170

the lower and upper bounds of competitive ratio.171

1.3.0.3 Programming Environments172

Python was used as the programming language for our algorithms. We run the online173

problem on google colab, with python version 3.6.9. and with max 12 GB RAM. For the174

offline problem , we run it on local laptop, the version of gurobipy is gurobipy-9.1.2 with175

academic licence. The RAM size of the computer is 8GB with OS Windows10.176
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2 Offline problem177

In this section, we firstly prove that the offline version of our problem can be formulated as178

an integer linear programming problem and give two mathematical models for it.179

Since the input is known, a first approach is to use a heuristic such as Greedy algorithm,180

however, this approach will not bring the optimal result in all the cases. Another approach is181

to tackle the problem as a linear programming one. In this approach, the problem is designed182

in terms of minimizing or maximizing an objective function subject to several constraints183

of the problem. In our case we deal with a minimization problem, namely minimizing the184

number of hospitals/machines. Due to the aforementioned facts and because patients have185

preferences for vaccine jabs treating the problem as an ILP is naturally.186

2.1 ILP models187

In this subsection we will introduce two ILP models. In both models, we considered n as the188

number of jobs that need to be scheduled. In order to avoid the confusion the name of the189

variable xj , that represents the patient j delay, was changed to αj .190

2.1.0.1 First model191

In the first model we will use a set of variables, namely:192

xj ∈ N the starting time of the first jab of job j, ∀j ∈ 1, ..., n193

xj ∈ N the starting time of the second jab of job j, ∀j ∈ n, ..., 2n194

zj,i =
{

1, if a jab j is assigned on machine i
0, otherwise ∀i ∈ {1, . . . , n},∀j ∈ {1, . . . , 2n}195

ti =
{

1, if machine i is used
0, otherwise ∀i ∈ {1, . . . , n}196

uj,j′ =
{

1, if jab j is overlapping with jab j′
0, otherwise ∀j, j′ ∈ {1, . . . , 2n}197

Note that we are dealing with 2n+ n2 + n+ n2 = 2n2 + 3n variables. The model itself is198

described below by equations (1) - (17).199

VS 2021



1:6 Machine minimization problem for vaccine scheduling

Machine minimization linear programming model200

Objective function:min
n∑
i=1

ti (1)201

Subject to: (2)202

xj ≥ rj ∀j ∈ {1, ..., n}203

lower bound for starting time of the first jab of job j (3)204

xj ≤ dj − p1 + 1 ∀j ∈ {1, ..., n}205

upper bound for starting time of the first jab of job j (4)206

xj+n ≥ xj + p1 + αj + g ∀j ∈ {1, ..., n}207

lower bound for starting time of the second jab of job j (5)208

xj+n ≤ xj + p1 + αj + g + lj ∀j ∈ {1, ..., n}209

upper bound for starting time of the second jab of job j (6)210

ti ≥ zj,i ∀j ∈ {1, ..., 2n} ∀i ∈ {1, ..., n} machine i is used (7)211

n∑
i=1

zj,i = 1 ∀j ∈ {1, ..., 2n}212

a jab is assigned exactly to one machine (8)213

zj,i + zj′,i + uj,j′ + uj′,j ≤ 3 ∀j, j′ ∈ {1, ..., 2n} j 6= j′ ∀i ∈ {1, ..., n}214

if jabs overlap they can not be assigned on the same machine (9)215

xj − xj′ − L uj,j′ ≤ −1 ∀j, j′ ∈ {1, ..., 2n} j 6= j′216

if jabs j and j’ overlap (10)217

xj − xj′ − L uj,j′ ≤ − ( cj uj′,j + cj′ uj,j′) ∀j, j′ ∈ {1, ..., 2n} j 6= j′218

if jabs j and j’ overlap (11)219

xj ≥ 0 ∀j ∈ {1, ..., 2n} (12)220

xj ∈ N ∀j ∈ {1, ..., 2n} (13)221

ti ∈ {0, 1} ∀i ∈ {1, ..., n} (14)222

zj,i ∈ {0, 1} ∀j ∈ {1, ..., 2n} ∀i ∈ {1, ..., n} (15)223

uj,j′ ∈ {0, 1} ∀j, j′ ∈ {1, ..., 2n} (16)224

(17)225226

Where cj =
{
p1, if j ≤ n
p2, if j > n and j ≤ 2n227

The number of constraints for this model are 5n+2n2 +2n+4 ·4 ·n2 +4n+n+2n2 +4n2 =228

24n2 + 12n229

2.1.0.2 Second model230

For this model we first define a constant T which represent the last time slot possible in that231

instance.232

T = p1 + g + max
j∈{1,...,n}

(dj + αj + lj) (18)233

Variables used in this model are defined as follows:234
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xj,i,t =
{

1, if job j is assigned on machine i on day t

0, otherwise
235

∀j, i ∈ {1, . . . , n},∀t ∈ {1, . . . , T}236

237

yj,i,t =
{

1, if first jab of job j is starting on machine i on day t

0, otherwise
238

∀j, i ∈ {1, . . . , n},∀t ∈ {1, . . . , T}239

240

uj,i,t =
{

1, if second jab of job j is starting on machine i on day t

0, otherwise
241

∀j, i ∈ {1, . . . , n},∀t ∈ {1, . . . , T}242

243

zi =
{

1, if machine i is used
0, otherwise ∀i ∈ {1, . . . , n},244

Second model is described by the equations (19) - (34) and uses 3 · n2 · T + n variables.245

Note that T could be bigger than n. This model use more variables than the previous one.246

Moreover, in the second model there are n·T+n+2n2+5n+4n2·T+n = 4n2·T+2n2+n·T+7n247

constraints. Due to the fact that T is a big constant we can affirm that for most of the248

instances the second model will have more constraints than the first. Therefore, the second249

model is more complex in terms of running times, we will see this as well in the experiments250

section of this paper.251

VS 2021



1:8 Machine minimization problem for vaccine scheduling

Machine minimization ILP model252

Objective function: min
n∑
i=1

zi (19)253

Subject to: (20)254

n∑
j=1

xj,i,t ≤ 1 ∀i ∈ {1, ..., n},∀t ∈ {1, ..., T} (21)255

256

T∑
t=1

n∑
i=1

xj,i,t ≤ 1 ∀j ∈ {1, ..., n} (22)257

258

k+p1∑
t=k

xj,i,t ≥ p1 yj,i,k259

∀j, i ∈ {1, ..., n} ∀k ∈ {rj , ..., dj − p1 + 1} (23)260

261

k+p2∑
t=k

xj,i,t ≥ p2 uj,i,k ∀j, i ∈ {1, ..., n}262

∀k ∈ {rj + p1 + αj + g, ..., dj + αj + g + lj − p2 + 1} (24)263

n∑
i=1

dj−p1+1∑
t=rj

yj,i,t = 1 ∀j ∈ {1, ..., n} (25)264

n∑
i=1

rj+p1+αj+g+lj−p2+1∑
t=rj+p1+αj+g

uj,i,t = 1 ∀j ∈ {1, ..., n} (26)265

n∑
i=1

T∑
t=1

yj,i,t + uj,i,t = 2 ∀j ∈ {1, ..., n} (27)266

267

n∑
i=1

(
rj+p1+αj+g+lj−p2+1∑

t=rj+p1+αj+g
t uj,i,t −

dj−p1+1∑
t=rj

t yj,i,t) ≥ p1 + αj + g268

∀j ∈ {1, ..., n} (28)269

270

n∑
i=1

(
rj+p1+αj+g+lj−p2+1∑

t=rj+p1+αj+g
t uj,i,t −

dj−p1+1∑
t=rj

t yj,i,t) ≤ p1 + αj + g + lj − p2271

∀j ∈ {1, ..., n} (29)272

273

zi ≥ yj,i,t ∀j, i ∈ {1, ..., n} ∀t ∈ {1, ..., T} (30)274

xj,i,t ∈ {0, 1} ∀j, i ∈ {1, ..., n} ∀t ∈ {1, ..., T} (31)275

yj,i,t ∈ {0, 1} ∀j, i ∈ {1, ..., n} ∀t ∈ {1, ..., T} (32)276

uj,i,t ∈ {0, 1} ∀j, i ∈ {1, ..., n} ∀t ∈ {1, ..., T} (33)277

zi ∈ {0, 1} ∀i ∈ {1, ..., n} (34)278

(35)279
280
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281

282

3 Online problem283

In this section we introduce a couple of theorems along with their proofs in order to find284

bounds for the competitive ratio to the online version of our problem.285

Firstly, a general lower bound for the problem is introduced. An online algorithm then is286

described and an analysis for competitive ratio bounds is provided. Our analysis is provided287

in terms of number of jobs.288

3.1 Competitive ratio general lower bound for the online problem289

I Theorem 1. There is no O(1)-competitive deterministic algorithm for the vaccine scheduling290

problem.291

Proof. We will first define a few useful series. Then we will create a series of adversaries292

Advc that will have an optimal solution using at most a single hospital, while the algorithm293

will use at least c hospitals. Finally, we will prove that the existence of this series implies294

that there is no O(1)-competitive deterministic algorithm for the vaccine scheduling problem.295

For this we will first define two numbers progressions as follows:296

x1 = 1 xk = x2
k−1 + xk−1 ∀k > 1 (36)297

and298

y1 = 1 yk = x2
k−1 = xk − xk+1 ∀k > 1 (37)299

We design the adversary Advc to generate an instance I as follows:300

301

1. p1 = p2 = 1, g = xc + 1302

303

2. k = c, n = xc304

305

3. Let zk be the starting time of any interval with length xk where ALG has up to this306

point placed at least (c− k)xk appointments.307

308

4. Generate x2
k−1 jobs in with rj,1 = zk, dj,1 = zk+xk, xi = 0, and li = 1 ∀j ∈ {1, .., n−yk}309

310

5. k = k − 1311

312

6. if k = 0 stop else go to 3313

314

We will prove that for any n ∈ N the following claims are true:315

Given any deterministic algorithm ALG for the vaccination problem,the instance generated316

by the adversary Advc has the following properties:317

Advc can find an interval with the constraints defined in the third line of the adversary.318

Advc will use xc patients in total.319

There exists an offline solution to the instance I using only a single hospital.320

ALG will give a solution to this instance with at least c hospitals.321

VS 2021



1:10 Machine minimization problem for vaccine scheduling

First, we will prove by downwards induction to k that Advc can find such an interval for322

every 0 < k ≤ c.323

Induction basis: If k = c, then any interval will do.324

Induction step: Assume that the theorem holds for k = i. We will prove that the theorem325

holds for k = i− 1. We will take a look at the interval [z, z + xi). We know that there are at326

least (c− i)xi = (xi−1 + 1)(c− i)xi−1 appointments in this interval as the theorem holds for327

k = i, and the adversary created x2
i−1 = (xi−1 − 1)(xi−1 + 1) + 1 extra for a total of at least328

(xi−1 + 1)((c− i)xi−1 + xi−1 − 1) + 1.329

Now we will take a look at the xi−1 + 1 intervals [z, z+xi−1), [z+xi−1, z+ 2 ·xi−1), · · · , [z+330

x2
i−1, z + x2

i−1 + xi−1). Note that these intervals are all disjunct and their union forms331

the interval [z, z + xi) by the definition of xi. As we have just seen, there are at least332

(xi−1 + 1)((c− i)xi−1 + xi−1 − 1) + 1 > (xi−1 + 1)((c− i)xi−1 + xi−1 − 1) appointments in333

this interval. Every appointment is in exactly one of the xi−1 + 1 intervals mentioned before.334

According to the pigeonhole principle that means that there is at least one interval with at335

least (c− i)xi−1 + xi−1 = (c− (i− 1))xi−1 appointments.336

Second, we will prove by induction to q ∈ N≤c that Advc will use xk patients from the337

step where k = q is defined onwards.338

Induction basis: If q = 1 then from step k = 1 onwards Advc will only use 1 patient. Induction339

step: Assume the theorem holds for q = i. Then Advc uses only kq patients from the step340

where k = i is defined onwards. Therefore, the amount of patients Advc uses from the step341

where k = i+1 is defined onwards is xi plus the amount of patients Advc uses when k = i+1,342

which is equal to xi + x2
i = xi+1.343

Now we use q = c in this result to get our second claim that Advc uses xc patients in344

total.345

Third, we will prove by downwards induction to k that every time Advc starts step 3,346

there exists a solution using at most one hospital that does not place any appointments in347

the intervals [zk, zk + xk) and [zk + xc + 1, zk + xk + xc + 1).348

Induction basis: If k = c this is trivial, as no patients are provided so the empty schedule349

suffices.350

Induction step: Assume this holds for k = i. Then we will prove that if i > 0, this will hold351

for k = i− 1. There are exactly x2
i−1 patients we have to schedule. First we will look at the352

first appointments. We will use the schedule for k = i as a basis, and only add appointments353

in [zi, zi +xi)/[zi−1, zi−1 +xi−1). This interval has size xi−xi−1 = x2
i−1, so we can schedule354

all first appointments there. All second appointments are scheduled exactly xc + 1 timeslots355

later, so the same argument holds there.356

To prove our claim, we use this result with k = 1 to get that there exists a solution with at357

most one hospital that does not use the intervals [z1, z1 + 1) and [z1 + xc + 1, z1 + 1 + xc + 1).358

The last patient has to be placed exactly there, so there indeed exists a schedule using one359

hospital.360

The fourth claim is that ALG will give a solution using at least c hospitals. We have361

already proved that the interval in step 3 can be found, so when k = 1 we know that362

there exists an interval with length 1 where ALG has up to this point placed at least c− 1363

appointments. After that, the adversary forces ALG to place an appointment exactly there,364

so there is a timestep with at least c appointments. As all these appointments require365

different hospitals, this proves that ALG uses at least c hospitals.366

Assume that there exists an O(1)-competitive deterministic algorithm. Let d be the367

competetive ratio. Then there exists a α such that ALG ≤ d · OPT + α for every input.368

However, if we take Advdd+α+1e, then dd+α+ 1e ≤ d+α, which is clearly untrue. Therefore,369
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there does not exist a O(1)-competitive deterministic algorithm. J370

I Theorem 2. There is an O(log logn)-competitive ratio lower bound for any deterministic371

algorithm for n-vaccine scheduling problem with n > 1.372

Proof. Let s1, s2, · · · be Sylvester’s sequence, defined as373

s1 = 2 sk = sk−1(sk−1 − 1) + 1 ∀k > 1 (38)374

. We will prove by induction to k that sk = xk + 1.375

Induction basis: For k = 1 we have that x1 = 1, and s1 = 2.376

Induction step: Assume that si = xi+1. Then si+1 = si−1(si−1−1)+1 = (xi−1+1)xi−1+1 =377

x2
i−1 + xi−1 + 1 = xi + 1.378

It is a well-known fact that sn = bE2n+1 + 1
2c where E is approximately 1.26408, so379

xn =
⌊
E2n+1

− 1
2

⌋
380

Now, assume that there exists a deterministic algorithm ALG with a competitive ratio not381

conforming to the lower bound of Ω(log logn). Then,382

∀α > 0,∀n0 > 0,∃n > n0,∀input with n patients : ALG
OPT

< α · log logn.383

Therefore, it also holds for α = 1
2 , and n0 = 2, so it implies that there is an n > 2 for which384

for every input we have ALG
OPT < 1

2 log2 log2 n. Let q be the highest integer for which xq is385

smaller than n Therefore this also holds for the adversary which uses Advq as a basis and386

adds patients with start time 2 · n+ 2, end time 3 · n+ 2, gap 0, and interval for the second387

jab 1, There is a schedule which uses only 1 hospital for this, as these appointments can be388

made at any time. However, ALG uses at least q hospitals. Now, as xq+1 ≥ n, we can say389

that390 ⌊
E2q+2

− 1
2

⌋
≥ n391

Therefore we have that392

E2q+2
− 1

2 ≥ n393

394

(E4)2q

≥ n395

396

(E4)2q

≥ n397

398

q ≥ logE4 log2 n.399

And, as we know that E4 < 4, that means that q ≥ log4 log2 n = 1
2 log2 log2 n. Therefore we400

have that401

1
2 log2 log2 n >

ALG

OPT
≥ q ≥ 1

2 log2 log2 n.402

Which is a contradiction. This proves that no such algorithm can exist, and therefore there403

is a lower bound of O(log logn). J404
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3.2 Algorithms for online problem and their competitive ratio405

3.2.0.1 Online algorithms406

In this paragraph we present two algorithms that can be used for solving the online machine407

minimization problem for vaccine scheduling. First we introduce an algorithm we called408

FirstFit. The strategy of our algorithm is as follows:409

For the first patient open a machine and place it on this machine;410

For the next patients.411

If a patient can be placed on the opened machines then the algorithm will place it on412

the first available time slots on the first machine it founds413

If there is no machine on which the patient can be placed open a new machine and414

place patient on that machine.415

A more detailed pseudo-code for this algorithm is presented in the appendix of this paper.416

A similar algorithm to FirstFit was also considered. We called this algorithm LastFit and417

the difference is that a patient is placed on the last available time slots on an available418

machine if possible.419

3.2.0.2 Competitive ratio bounds for the online algorithms420

In this paragraph we show the lower bound for the introduced algorithms, namely FirstFit421

and LastFit.422

I Theorem 3. For the FirstFit algorithm there is a O(logn)-competitive ratio lower bound.423

Proof. An adversary Adv can be designed to give instances with a sufficient large interval424

for the second jab, in order for it to always fit on one machine, in this case we can ignore the425

second jab entirely from our proof. Adv design an instance I for n-vaccination problem as426

follows:427

For n ∈ [2k, 2k+1]428

1. Place n− 2k jobs in interval [2k · p1 + 1, 2k · p1 + 1 + (n− 2k) · p1]429

2. Place 2k−1 jobs in interval rj = 0 and dj = 2k · p1 ∀j ∈ 1, ..., 2k−1
430

3. k = k − 1431

4. if k = 0 then place 1 job in interval [0, p1] else go to 2432

We will prove that for any n ∈ N with n ∈ [2k, 2k+1) the instance generated by the adversary433

Adv has the following properties:434

There exists an offline solution to the instance I using only a single machine,435

ALG will give a solution to this instance with at least k + 1 machines.436

Let n ∈ [2k, 2k+1], then:437

n− 2k jobs are generated in interval [2k · p1 + 1, 2k · p1 + 1 + (n− 2k) · p1], which means all438

this jobs will be assigned on one machine by FirstFit algorithm. Notice that for the offline439

solution this jobs also will be assigned on a single machine. Next 2k−1 jobs can be assigned440

on the same machine by both FirstFit algorithm and offline solution since their intervals441

don’t overlap with the intervals of previous n − 2k jobs. Note that for the 2k−1 jobs the442

interval is [0, 2k · p1] and the first 2k−1 time slots on the one machine we are using so far are443

assigned to our jobs by the FirstFit algorithm. Now for the next 2k−2 jobs the interval is444

[0, 2k−1 · p1], but there are no free time slots in this interval on the machine we use so the445

FirstFit algorithm can only open/use another machine to place the jobs. Meanwhile, the446

offline solution can "move" the jobs on the first machine and free up the interval [0, 2k−1 · p1]447

for the 2k−2 jobs that just came, namely the first 2k−1 jobs will be assigned one after another448
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in the interval [2k−1 · p1 + 1, 2k · p1]. Therefore the offline solution can still use only one449

machine.450

We can use the same argumentation k − 1 times and at each step decreasing k by one.451

When k = 0 the adversary generates one more job in interval [0, p1] but this interval is452

already busy on all the machines was used so far so we use another machine. In total our453

algorithm will use 1 + k − 1 + 1 = k + 1 machines. On the other hand the offline solution454

will assign all the jobs to one machine. Therefore for any n ∈ N the claims holds. The455

competitive ratio is c = ALG(I)
OPT (I) = k+1

1 = k + 1.456

2k+1 ≥ n⇒ c = k + 1 ≥ log2 n457

Therefore, the FirstFit algorithm is O(logn)-competitive.458

J459

I Theorem 4. The LastFit algorithm has O(logn)-competitive ratio lower bound.460

Proof. Using a similar proof to the proof from theorem (3). But with rj = 2k · p1 and461

dj = 2k+1 · p1. J462

In order to prove an upper bound, we will first prove a related lemma.463

I Lemma 5. Let I = [a, b) be a time interval where in the solution of FirstFit every single464

day has at least q patients. Then there exists an interval I ′ = [a′, b′) with I ⊆ I ′, I ′ has length465

at least 2 ∗ |I|, and in the solution of FirstFit every single day in I ′ has at least q− (2 ∗OPT )466

patients.467

Proof. Let I be defined as before, and let I ′ = [a′, b′) be the largest interval for which I ⊆ I ′,468

and in the solution of FirstFit every single day in I ′ has at least q − (OPT + 1) patients.469

We will prove that I ′ has length at least 2 ∗ |I|.470

We will look at the execution of FirstFit. For every single patient p scheduled in I ′, we471

will look the number of patients already scheduled on that day. If that is q−2∗OPT or more,472

then we take a closer look at where the patient is placed in the optimal schedule. If there473

is a possibility to schedule the patient outside of I ′ in the optimal schedule, then FirstFit474

would have scheduled the patient outside of I ′ as well, as that would mean either a′ − 1 or b′475

is in the interval. However, at those times FirstFit does not schedule q − 2 ∗OPT patients,476

otherwise I ′ can be larger. Therefore, in the optimal schedule p has to be scheduled in I ′.477

In total, there are (2 ∗OPT )|I|+ k such patients. Therefore, there are at least that many478

patients in I ′ in the optimal solution. However, there are no more than |I ′| ∗OPT patients479

in the optimal solution. Therefore,480

(2 ∗OPT )|I| ≤ |I ′| ∗OPT481

482

2 ∗ |I| ≤ |I ′|483

This proves the lemma. J484

I Theorem 6. For the FirstFit algorithm there is a O(logn)-competitive ratio upper bound,485

assuming only one jab and p = 1.486

Proof. Now to use the lemma. As we know, the amount of patients at the day with the487

most patients according to FirstFit is ALG. Let that day be day d, and I0 = [d, d+ 1). Let488

Ii = I ′i−1 as defined in the lemma above. Repeated use of that lemma says that there are489

at least ALG − 2 ∗ i ∗ OPT patients in interval Ii, and the length of Ii is at least 2i. Let490

b=ALG
OPT . Let Iw be an interval with more than 0 patients according to this. Then the number491

VS 2021
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of patients in Iw is at least 2w, and at most n. Therefore 2w ≤ num ≤ n, so w ≤ log2(n).492

Now we take a look at I 1
2

ALG
OP T

. If there are no patients, then ALG− 2 ∗ ( 1
2
ALG
OPT ) ∗OPT < 0.493

Therefore, ALG−ALG < 0, which is a contradiction. Therefore, there are patients. Thus,494

we have 1
2
ALG
OPT ≤ log2(n), and ALG

OPT ≤ log2(n).495

J496

4 Experiments and results497

In this section, we will provide a series of computational experiments for our approaches on498

both offline and online problems. Firstly, the experiments for offline models are presented.499

In this series of experiments, we measured the running times of our ILP models on different500

instances with different number of patients. Test instances were generated by several teams501

of people that worked on that problem. The average time of 5 independent runs for each502

instance is presented in the table 1 along with the optimal number of machines needed for503

that instance. For some instances, because of the fact that the constant T is too big, the504

second models has too much variables and constraints and it is impossible to be solved in505

reasonable time, therefore, we indicated running time as –. The running times of the second506

model are smaller than for the first one, but this happens just for some special instances. In507

average the running times of the first model are much smaller than for the second one. These508

results prove our claim that the model that use starting times of the jabs for the patients509

can be solved more faster than the model that use a variable for each time slot.510

The experiments for online algorithm are presented in table 2. The instances we used511

for those experiments are different for those used in the experiments for offline problem. A512

number of 5 independent runs where held for each instance and the average time along with513

the average solution were considered. Moreover, for some small instances we run the first514

ILP model in order to get the optimal solution, and computed the rapport of number of515

machines used by our online algorithm to the optimal solution.516

517

5 Conclusions and Future Work518

In our paper, we proposed two mathematical models for the offline problem and two al-519

gorithms for the online problem. In addition, we provided an analysis for competitive ratio520

bounds and presented a comparative analysis of different ILP models. Our computational521

experiments and results, along with theorems and proofs confirm the aforementioned. Further522

improvements include the reduction of time complexity for offline problem by designing more523

smarter ILP models. For the online problem an important direction for future works is to524

extend our proof and find an upper bound that considers the vaccination problem with two525

jabs. Online deterministic and non-deterministic algorithms that have a competitive ratio526

closer to general lower bound also present a high interest for future works.527

528
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Algorithm 1 FirstFit

1: procedure Fill hospitals
2: start← the first day of a jab
3: end← the last day of a jab
4: machine-idx← the index of a hospital
5: patient-idx← the index of a patient
6: for i←start to end do
7: machines[machine-idx][i] ← patient-idx
8: procedure Find interval
9: i-start← the first available day for a patient

10: i-end← the last available day for a patient
11: processing-time← the processing time of a jab
12: for machine-idx← 0 to length of used machines− 1 do
13: machine← machines[machine-idx]
14: if i-start >= len(machine) then
15: while len(machine) <= i-start + processing-time do
16: append 0 to machine
17: return machine-idx, i-start, i-start + processing-time - 1
18:
19: while len(machine) <= i-end do
20: append 0 to machine
21: for day←i-start to i-end− processing-time + 1 do
22: is-full← False
23: for day-of-processing← 0 toprocessing-time do
24: if machine[day + day-of-processing] 6= 0 then
25: is-full← True
26: break
27: if !is-full then
28: return machine-idx, day, day + processing-time - 1
29: append empty list to machines
30: length ← 0
31: while length <= i-start + processing-time do
32: length ← length + 1
33: append 0 to machines[-1]
34: return length of machines - 1, i-start, i-start + processing-time - 1
35: procedure FirstFit
36: machines ← empty list
37: p1 ← input
38: p2 ← input
39: gap ← input
40: patient ← 0
41: date ← input
42: while data does not contain ’x’ do
43: patient ← patient + 1
44: map data to r, d, x, l
45: machine-idx-1, first-dose-start, first-dose-end ← Find Interval(r, d, p1)
46: . machine-idx-1 is the hospital that provides first jab for incoming patient
47: Fill hospitals (first-dose-start, first-dose-end, machine-idx-1, patient)
48: machine-idx-2, second-dose-start, second-dose-end ← Find Interval((first-dose-

start + p1 + gap + x, first-dose-start + p1 + gap + x + l, p2))
49: . machine-idx-1 is the hospital that provides first jab for incoming patient
50: Fill hospitals (second-dose-start, second-dose-end, machine-idx-2, patient)
51: print first-dose-start, machine-idx-1, sec-dose-start, machine-idx-2
52: data ← input
53: print length of machines
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Table 1 Experiments for the offline problem

Results for offline models.
Test instance Offline running time

model 1
Offline running time
model 2

Offline solution

0 0.00099 sec 0.0 sec 0
1 0.00879 sec – sec 1
2-1 0.00677 sec 0.016853 sec 1
2-2 0.00965 sec – sec 1
3-1 0.01884 sec 0.033725 sec 2
3-2 0.02810 sec 0.017344 sec 1
3-3 0.01820 sec 0.042550 sec 1
4-1 0.06633 sec 0.033726 sec 2
4-2 0.07157 sec 0.032771 sec 3
4-3 0.04113 sec – sec 2
4-4 0.00501 sec 0.101718 sec 2
5-1 0.10608 sec 0.383249 sec 3
5-2 0.03889 sec 0.639411 sec 4
5-3 0.06038 sec 0.119503 sec 3
5-4 0.02518 sec 0.207083 sec 1
6-1 0.0624 sec 0.860603 sec 2
6-2 0.074734 sec 0.916763 sec 2
6-3 0.055260 sec 0.135616 sec 1
7-1 0.142165 sec 1.832611 sec 2
7-2 0.084716 sec 0.163283 sec 1
9 0.165624 sec 1.144028 sec 1
10-1 0.7462 sec 10.1332 sec 3
10-2 0.4541 sec 6 min 2.9382 sec 1
10-3 0.1314 sec 18.8081 sec 1
12 1.37468 sec 37.8269 sec 3
15 0.31250 sec 11.8696 sec 3
20 1.64017 sec 1 min 24.5422 sec 2
23 1.98096 sec 15 min 26.2508 sec 1
45 8.35741 sec – sec 5
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Results for online algorithm.
Test instance FirstFit running

time
Online solu-
tion

Offline solu-
tion

ALG/OPT

0 0.000031 sec 0 0 -
1 0.000036 sec 1 1 1
3-1 0.000106 sec 3 1 3
3-2 0.000096 sec 2 1 2
3-3 0.000061 sec 2 1 2
3-4 0.000084 sec 2 1 2
3-5 0.000076 sec 2 1 2
3-6 0.000064 sec 3 - -
3-7 0.000078 sec 3 2 1.5
4-1 0.000204 sec 2 2 1
4-2 0.000073 sec 3 2 1.5
4-3 0.000086 sec 2 1 2
4-4 0.000141 sec 2 2 1
4-5 0.000068 sec 3 2 1.5
5-1 0.000073 sec 1 1 1
5-2 2.094662 sec 3 2 1.5
6 0.000145 sec 4 2 2
7-1 0.000123 sec 2 1 2
7-2 0.000119 sec 3 2 1.5
7-3 0.000179 sec 3 2 1.5
8 0.000096 sec 2 1 2
10 0.000197 sec 5 2 2.5
14 0.000208 sec 4 - -
20-1 0.000268 sec 2 1 2
20-2 0.000276 sec 4 2 2
45 0.004281 sec 13 5 2.6
46 0.050989 sec 33 29 1.138
50-1 0.003321 sec 12 - -
50-2 0.000803 sec 7 - -
60 0.001890 sec 10 4 2.5
69 0.004452 sec 34 - -
96-1 0.003485 sec 18 - -
96-2 0.003961 sec 16 - -
96-3 0.004670 sec 29 - -
96-4 0.002880 sec 19 - -
116 0.078250 sec 27 - -
1000 0.215953 sec 49 - -
5000 1.338015 sec 110 - -
10000 0.381817 sec 23 - -

Table 2 Results for the online algorithm
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